Обратноходовой блок питания на UC3842 ( 54 фото + 1 видео )

Гаджеты

Из этой статьи вы узнаете, как Роман, автор YouTube канала «Open Frime TV», своими руками собрал обратноходовой блок питания на микросхеме UC3842, а также вместе разберемся во всех тонкостях схемы.


Свой путь в освоении блоков питания автор начал с двухтактных схем, так как они более просты в понимании, а в однотактных всегда пугал зазор и прочая ерунда. Ну вот автор достиг момента понимания и теперь готов поделиться им с нами. Итак, давайте начинать.
А начнем мы с самого начала, т.е. непосредственно с принципа работы обратно ходового преобразователя. На первый взгляд тут нет ничего сложного, всего 1 транзистор, схема управления и трансформатор.




Могут понадобиться

L298N контроллер шагового двигателя
Набор регулятор напряжения
Контроллер Arduino UNO
Миниатюрный усилитель на LM386 - kit набор
150Вт повышающий преобразователь DC-DC 10-32В

Но если присмотреться повнимательнее, то можно заметить, что направление обмоток у трансформатора разное и вообще это не трансформатор вовсе, а дроссель, в котором присутствует тот самый зазор, о котором было упомянуто выше, о нем поговорим позже.



Принцип работы данного блока питания состоит в следующем: когда открывается транзистор и пропускает напряжение на обмотку, дроссель накапливает энергию.


Во вторичной цепи ток не течет, так как диод включен в обратном направлении, этот момент называется прямым ходом. В следующий момент времени транзистор закрывается и ток через первичную обмотку уже не протекает, но за счет того, что дроссель накопил энергию, он начинает отдавать ее в нагрузку. Это происходит потому, что напряжение самоиндукции имеет другой знак полярности и диод оказывается включенным в прямом направлении.


Теперь настало время поговорить о том, зачем собственно тут необходим зазор. Дело в том, что у феррита очень большая индуктивность и если зазора не будет, то на обратном ходу он не передаст всю энергию в нагрузку, и когда произойдет следующее открытие транзистора, дроссель войдет в насыщение и станет просто куском металла, а транзистор в таком случае будет работать в режиме короткого замыкания.


Теперь давайте рассмотрим непосредственно схему нашего будущего устройства.


Как вы могли заметить - это достаточно популярная схема на микросхеме UC3842.


В данной схеме нет ничего нового – в ней все стандартно. Скорее всего такая схема не раз попадалась вам в интернете, так как эта схема самая устойчивая, так как мы идем в обход внутреннего усилителя ошибки (tl431) на выходе блока.


Также на схеме отсутствуют номиналы некоторых элементов, это связано с тем, что их необходимо рассчитать конкретно под ваши нужды и условия.


Но пугаться не стоит, в этом нет ничего сложного, весь расчет легкий и производится в полуавтоматическом режиме, поэтому справится даже новичок.
На рисунке ниже красным цветом выделены элементы (R2, R3 и C1), расчет которых осуществляется в программе Старичка, подробности дальше перед намоткой трансформатора.


Резистор R4 рассчитывается под определенную частоту, также специальной компьютерной программой. Она присутствует в пакете программ к данной схеме, скачать можно ЗДЕСЬ или в описании под оригинальным видеороликом автора, ссылка «ИСТОЧНИК» в конце статьи.



Для данной самоделки подойдут следующие микросхемы: UC3842, UC3843, UC3844 и UC3845. Отличие состоит в том, что у микросхем UC3844 и UC3845 частота генератора делится на 2, а у UC3842 и UC3843 нет, поэтому максимальное значение импульса у двух первых микросхем - 50%, а у двух следующих - 100%.

Также потребуется произвести расчет резистора, ограничивающего ток оптопары, таким образом, чтобы при номинальном напряжении на выходе через оптопару протекал ток равный 10мА.




Данный блок питания срывается в релейный режим работы если нагрузка на выходе отсутствует, поэтому необходимо установить нагрузочный резистор. При номинальном напряжении данный резистор должен рассеивать 1Вт.




И последнее у нас - это грубая настройка переменного резистора.


Данный переменный резистор вместе с постоянным создают делитель напряжения, и при номинальном напряжении в точки деления должно быть напряжение равное 2,5В.



Непосредственно перед установкой в плату переменный резистор необходимо выкрутить на примерно нужное сопротивление, делая это с помощью мультиметра.


Ну вот, собственно, и весь расчет. Теперь переходим к печатной плате.


Как видим, здесь автор постарался минимизировать все, как только можно, и в итоге остался доволен результатом, хоть и разводка получилась не идеальная.

В данном примере применен трансформатор ETD29, но если у вас в наличии имеется другой трансформатор, то просто измените размер трансформатора, а дальше скопируйте трассировку платы автора.

После того, как плата была нарисована, автор сделал сначала, так сказать, макет широко известным методом ЛУТ.


На этом макете он все протестировал, а потом уже заказал плату в китайской компании. И вот спустя месяц такие платки в итоге имеем:


Теперь приступаем непосредственно к запаиванию всех деталей и компонентов на свои места. Начнем, пожалуй, с рассыпухи.


Теперь у нас впереди намоточные работы. Сперва начнем с малого - входной дроссель. Для него подойдет ферритовое кольцо проницаемость 2000-2200. На этом кольце мотаем 2 по 10 витков проводом 0,5мм.



Далее выходной дроссель. Его индуктивность должна быть не очень большой, чтобы не создавать лишних резонансных колебаний. Мотать выходной дроссель можно как на кольце из порошкового железа, так и на ферритовом стержне. Автор решил мотать на вот таком колечке с проницаемостью 52.


Вся намотка состоит из 10 витков проводом 0,8 мм. Ну а теперь нам предстоит самая сложная часть сегодняшней самоделки - это намотка силового трансформатора-дросселя.


Тут в первую очередь необходимо определиться с напряжением и током, тут есть некоторые ограничения, такие как, максимальный ток не должен превышать 3А без охлаждения и 4А с охлаждением, так как для большего тока диодам Шоттки необходим радиатор большей площади.




Для расчета трансформаторов автор рекомендует воспользоваться программой Старичка. Ниже представлен интерфейс данной программы.


В нужные поля водим все необходимые параметры и получаем на выходе данные для намотки, а также необходимый зазор сердечника.


Также помимо этого, программа посчитала нам сопротивление резистора R2 и минимальное значение ёмкости входного конденсатора C1.
Как видим, напряжение для самозапита автор выбрал 20В, так это самое подходящее значение.


Также автор замечает, что еще одним плюсом данной программы является то, что она может посчитать нам параметры снаббера, что, согласитесь, очень удобно.


Итак, приступаем к намотке трансформатора. Для того чтобы облегчить себе задачу и в процессе намотки не сбиться, все обмотки мотаем в одну сторону. Начало и конец изображены на печатной плате.
Первичную обмотку делим на 2 части, сначала половина первички, затем вторичка и еще слой первички. Таким образом уменьшается индуктивность рассеивания и увеличивается потокосцепление.


В последнюю очередь приступаем к намотке обмотки самозапита, так как она не столь важна. Пример намотки трансформатора сейчас перед вами:






И вот практически все готово, осталось только подобрать зазор или же купить трансформатор с готовым зазором, собственно так и сделал автор.


Если все же пришлось подбирать зазор, то под рукой должен быть хоть какой-нибудь прибор измеряющий индуктивность, например, мультиметр с функцией измерения индуктивности.
Если получившаяся индуктивность совпадает с расчетной (примерно), то наш трансформатор намотан правильно и можно устанавливать его на плату.



А в конце как всегда произведем парочку тестов.



Загорелся светодиод, блок питания запустился. Напряжение на выходе составляет чуть больше 12В, но с помощью подстроечного резистора можно выставить более точное значение.


С тестом нагрузки в виде лампы накаливания наш самодельный блок питания справляется на ура, а это значит, что у нас получилось отличное устройство.


На этом все. Благодарю за внимание. До новых встреч!

Видео:



Материал взят: Тут

Другие новости

Навигация